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by
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... . . Abstract:

We discuss methods of approximating stable neutral functional

differential equations and associated optimal control problems

by sequences of optimal control problems for ordinary differen-

tial equations. By introducing a class of "mollified" neutral

functional differential equations, convergence of the linear

interpolating spline and the averaging approximation scheme is

proved. A number of numerical examples is included.
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1. Introduction and Notation.

In recent years a significant amount of research was

directed towards developing approximation schemes for delay dif-

ferential equations. Although quite a few attempts have been

made before, a paper by Banks and Burns [2] is probably the first

one that contains convergence proofs (in a functional analysis

setting) for a specific scheme - called averaging approximations

- as well as numerical results. Various different schemes, most

important spline approximation schemes, have been discussed in

the meantime and we refer to [1,2,3,20]. For neutral functional

differential equations (NFDE) the author's papers [15] and [7]

are probably one of the first contributions to this field. Sub-

sequently in ( 9 ] and [11]spline schemes and the averaging

approximation scheme have been discussed in different state

spaces. For a treatment of a certain class of NFDE's that can

be transformed to functional differential equations (FDE) we

mention [18].

In this paper we address the question of numerical approxi-

mation methods for optimal control problems associated with non-

linear NFDE and we restrict our attention to the averaging or, what

is almost equivalei-t, to interpolating linear spline schemes, Al-

though one might suspect that these schemes converge less quickly

than higher order schemes, the extreme simplicity of their

algebraic structure and the resulting simplicity in computer

IL|
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2.

programming is a persuasive reason for their investigation.

Due to lack of high-order smoothness (averaging approximation subspaces

consist, roughly speaking, of L2 functions and linear inter-

polating splines are W1 '1 functions), however, it requires much

more tedious analysis to verify convergence of these latter

schemes than for schemes whose approximating subspaces consist

of functions of higher order smoothness [4].

The convergence result that is discussed in this paper

generalizes the one in [15] in that it is uniform in the control

function that enters into the right hand side of the equation

and it extends [9,11] in that these latter papers treat only

linear NFDE. The presentation is organized in the following way.

Section 2 contains the existence-uniqueness theory that will be

relevant for the rest of the paper and introduces the "mollified

NFDE". In Section 3 we first discuss an approximation result

for nonlinear FDE which generalizes those existing in the litera-

ture in that it allows nonlinear point delays and subsequently

we apply this result to the mollified NFDE to prove the above-

mentioned convergence result for NFDE. Section 4 finally con-

tains a discussion of a class of optimal control problems and

examples.

Throughout the paper we shall employ the following notation.

The n-dimensional Euclidean space is denoted by JRn and it is

endowed with the Euclidean norm unless specified otherwise. The

I ..



3.

set of all nonnegative real numbers is ]R+. For -o<a<b<co

the space of all continuous functions x:[a,b] +Rn is denoted

by C(a,b;]Rn ) and is endowed with the suprenum norm [x[[~]

We let LP(a,blRn), 1 < p < =, stand for the Banach space of

all equivalence classes of functions x:(a,b) -)1Rn such that

Ixfp  is integrable and denote the usual norm by 1'1p,[a,bl"

There will ariseno need to distinguish between representatives

and equivalenc-e classes of functions in LP(a,bFRn). The linear

space of locally integrable, essentially bounded functions

is denoted by L OlOC(a,o Rn) and Wl,0(a,b;Rn) stands for the

Sobolov space of absolutely continuous functions with derivative
in Lw(a,b;Rn). For C(-r,O ]n), r > 0, we simply write C

with norm I'); analogously LP = LP(-r,ORn) and

W1 ,'= = Wl'(-r,ORn). We shall also need the space of continuous

functions x:[a,b] - C abbreviated by C(a,b;C) and endowed

with suprenum norm . The restriction of a function[a,by

i to a subset J of its domain is denoted by fIJ. We let

91.,1, stand for the vector space of all real n x m matrices and

A* will be the transpose of A C Yn . Finally, as usual in then ,m

theory of delay equations, for r > 0, a > Oand x:[-r,a] -lRn the

function xt is defined by xt(s) = x(t+s) for s E [-r,O]. Some familiarity

with the basic concepts of spline analysis is assumed; as a reference

we cite [19]. The reader, who is unfamiliar with delay equations,

is referred to [8].

t1
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2. Existence Theory and the Mollified Equation.

We consider the nonlinear neutral functional differential

equation (NFDE)

d D(xt) = f(t,xtu(t)), for t > tat (2.1)

where

D(*) = *(0) - * Bi(-ri), for , E C (2.2)
i=l1

m)

with 0 < r 1 ... < r. = r, Bi E n,n and Dom(f) = [t0 ,-) x C x]Rm .

A function x(.;O,u) or x(.;O) or simply x will be called a

solution of (2.1) on [t0 -r,T], T > t0 , if xt 0 and

t rt
x(t) = 0(0)- [ BiO(-ri) + Bix(t-ri) + J f(Sxs,u(s))ds (2.3)

i=l 1=1 to

holds for t E (to,T]. The following conditions on f will be

used:

(Hi) For all a > to, x E C(t 0 -r,a;en) and u E LP(t 0 ,ta m ),

the mapping s f(s,xs,u(s)) from [t0 ,a) -lRn is

* 1 integrable;
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(H2) for all B > 0 there exists a nondecreasing function

fl W'loc t 1 1+)n1 1 Llct0,-;R such that

If~t, ,u) - f~t,*,u)l < noC)C*Il/2I 1

for all t E [t0 ,o), and * E C with W ] < 8,

qI) < and u CiRm;

(H3) there exists a nondecreasing function n2 E L'llc(t0, 
+ )

such that

If(t, ,u)j < n 2(:t)(l+iuiP/2)([W+l),

for all t E [t0 ,-), E C and u EIRm.

Remark 2.1. By a simple calculation one can verify that (H3)

will be satisfied, e.g., if (H2) holds and if

(a) there exists a E E C and n3 E L 'loc(t,OIR+)

such that If(tV,u)I < n3(t)(l+IuIP/ 2 ), and

(a) there exists n2 E L7'loc(t0 ,wR ) such that

If(t,*,u)I < n 2 (t)(l+ulP/ 2)(Il+l) for all

t E [t 0 ,-), u CIRm  and all 1 1 sufficiently large.

Remark 2.2. Conditions (Hi) - (H3) are comparable to conditions

(Hi) - (Hiii) in [1]. The conditions in [1] include initial data
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in L2 (-r,01Rn), and linear discrete delays but restrict the

class of nonlinear functions f to those arising from distributed

delays. The conditions used in this paper include nonlinear dis-

crete delay terms.

Remark 2.3. The most frequently cited class of examples for NFDE

is the one arising from certain hyperbolic partial differential

equations modelling lossless transmission lines [6,10]. In this

case f = f1 + f2, where f1  is linear and f2 is of the form

f() = f2 ((0)+(-r)) describing the characteristic curve of a

diode. So there is a reasonably large class of examples to which

our theory applies.

Lemma 2.1. If (HI) - (H3) hold, if * E C and if U is a bounded

set in LP(t0 ,T;R m ) for some T > to, then

(LI) there exists a unique solution x(.; ,u) E C(-r+t 0 ,T;Rn)

of (2.1) for each u E U and

(L2) the family of functions {x(.;fu)ju E U1 is a bounded

set in C(to-r,T;Rn).

We shall not give the proof of this lemma here, since it only

involves a standard Piccard-iteration-technique. (L2) follows

easily from (H3).
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We turn to the following "mollified" form of (2.1) and

define for e > 0

'C t r
x(t) = ()-~ IBi4(s-ri)ds + 1-I.Bix(s-ri+t)ds + If(s,x5,u(s))ds.

i=l 0 i l 0 (2to

Solutions x£(.; ,u) or xc(.;O) or simply xc of (2.4) on-

[t -r,T) are functions satisfying (2.4) with F-0 Xto0

Lemmna 2.2. Let T > to, E C, let U be a bounded set in

LP(t0 ,T+l *m) and assume that (Li), (HI) and (H2) hold. Then

(a) there exists a unique solution xc(.; ,u) of (2.4)

on [t O-rT£, with Tc > T for all sufficiently

small c and all u EU.

(b) If, moreover, (L2) holds, then

lim xc (t;o,u) = x(t;o,u)

uniformly in t E [t0,T] and u E U.

Proof. Parts (a) and (b) will be proved simultaneously. Let

x(-;~u)= x(-) be the solution of (2.1) on [t0-r,T] for some

u C U, let 0 r1  and =sup 11 x (- ;,u)I[ For
uEU [ 0-r,T]V

a E [t0 t0+min(r 1-£0 ,T-t0 )] we define

={zjz C C(t0,ctalkn), liz4 [total1
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and for e E(.,0 c) and t E [t0 ,ct] we let

(v"Z) (t) = ()+ - Ilf Bi(4 (s+t-t0-r.) - *(s-ri))ds + J f(s,, u(s))ds,

4 (s) for s E [-rO]

where s =

(0) for s E [0,-o)

z(s) for s E [t 0 t

and i(s)={
1 s-t0 ) for s E [t0-r,t0 ]

Obviously Ve(-qa) a C(t0 ,t*IRn). We shall verify VstMa)

and that Ve is a contraction for some a~ > too For z~w E~qa

and t E [t0,cx) it follows from (112) that

I(VE:Z)Ct) _ (VeW) (t)I f j(s,isu(s)) f(s,w5,u(s))Ids <

A

< IIz-wII [tOt nf1Y~(T) Jt (1+ 1u(s) I p/2)ds <

< jz-wII [tt n 9+l T)tt)1/2(Tt) 1/2 + Iulp/t I]

(2.5)

where the right hand side of (2.5) is independent of £, for 0 < c < c0*
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We let x be a solution of (2.1) and use (112) once again to

find

I(CVz)(t)l <Ix(t)l + I(VFz)(t)-x(t)l <

< y + I Bi((s+tt-ri) - 4(t-to-ri))dsI +

i=l 0
B i s - r i) -  'r ) d s l + t l f(s ' Zs 'u(s)) - f(sxsU(S))Ids <
0 0

< y + 2.= IIBill po(c) + 2nY+(T)(y+1)(t-t0)1/ 2 [(T-t 0 )1/ 2 +Iulp/ 2 t o , T]1, (2.6)

where P0 denotes the modulus of continuity of x(.) on [-r+t0,T]. Estimates

(2.5) and (2.6) imply the existence of solutions x (.;4',u) on

[t 0 -r,ct 1 ] for some a, > to and all u E U. By (H2) and an!0

estimate using the Gronwall lemma, it also follows that

lim xc(t;¢,u) = x(t;4,u) (2.7)C+0

uniformly on [to,a 1 ] and uniformly in u E U. Using the uniformities in t

and u in inequalities (2.5) and (2.6) we may now proceed stepwise with step-

size al - to in each step decreasing the range of c, if necessary, to

bound the underlined term in the estimate of Ve z by an additional

use of the triangle inequality and the fact that (2.7) holds on

all previous intervals. This concludes the proof. M]
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The last lemma of this section will be of importance for the

approximation. of optimal control problems associated with (2.1).

We shall need an additional hypothesis:

'(H4) Conditions (Hl)-(H3) hold with p = 2 and

f(t, ,U) f f1(t, ) + f2(t, )u; moreover for all

at 0  and x E C(t O-r,ctR ) the map

- -t -* f 2 (tixt) is-in - L2 (to 0 9~ ,m~

As usual-b.will denote weak convergence.

Lemma 2.3. If (Hl)- (H4) hold and uk 'u in L2 (tOTIlRm)

for T > to, then

lim x(t; ,u k =X(t; ,U)

uniformly in t E [toT].

:'Proof. From (H3) it follows that there exists 0 > 0, such

* that I xtC.;,u)I < and ax(;,kI< for all t E [tOT]

and k = 1,2,.....By (H2) and (M4) we get for tE [t0,min(T,t0 +rl)]

jx~t 'u - X(t;4',uI if M s'x5s4u k )u k (s)~ ,x5 ,u),uk~s)))dsi +
ft0

+I f (f(s,x (Ou)U kCs)) - f(s,xs (%u),u~s)))dsI <
t0



it if(, Ouk )uk (s)-f(~ 0Uuk r)Is+It k us)s
t 0fsx(, , (s) fs(,)u it))d 0 f2(s~xs(Ou))(u (s)-us)I

< ~()(T- 0
1/2+ c uksIds)l 1 ct Ixs(.; ,u)-xs5@;O,uk)I sk/2

t0 0o

where urn (k) = 0. The last inequality implies
k-co

to

so that by an application of a generalized Gronwall lemma and since

{u k jk=, 2 ... } is a bounded subset of L 2(t OrTeR), the result holds

on [t01min(T,t 0+r 1) Again in a finite-number of steps we reach T.

'Ft
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3. An Approximation Result that is uniform in the Control Variable.

In this section we shall prove convergence of an approxima-

tion scheme for (2.1) which is uniform in u, as u varies over

a bounded set U in LP(t 0,TM m). This result will then be

used in Section 4 to numerically solve optimal control problems

associated with (2.1). The idea is to approximate (2.1) by the

sequence of mollified equations (2.4), and then to use techniques

-- that have been-developed for the approximation of FDE. Of course,

passing to the limit, as the FDE converges to the NFDE is the

major difficulty that has to be overcome.

We start by considering the FDE

x(t) = f(t,xt,u(t)), for t >t ~to

(3.1)

xto = , with 0 E C.

In many instances the reformulation of (3.1) as a Cauchy problem

in a function space over the delay interval has proven to be help-

ful [1,12 et al]. For the space C this has been studied in great

detail in [13] and others. It is the variation of constants

formula of this abstract Cauchy problem which will be of impor-

tance for our purposes. Let PC = PC(-r,OR n ) denote the space

of piecewise continuous functions (-r,O] JR n endowed with the

sup-norm and define S(t): PC PC by

I
*1
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(0 = () for s > -tCsct)4)(s M(t+s) for -r < s < -t

and Q : [-rO] P PC(-r,O;Yn,n) by

Q(s)= I for s = 0

0 0 for -r < s < 0.

Consider next the integral equation in C given by

xt= S(t-to)¢ + ft S(t-s)Qof(S'XsU(S))ds, for t > t0  (3.2)
t0

where the integral has to be interpreted pointwise as an integral

in 1n i.e.:

0 to

for T E [-r,0]. It is known.[12, Proposition 2.1] that for initi-al data

in C and under a condition that is weaker than (HI), (3.1) and

(3.2) are equivalent in the sense that x(t) is a solution of

(3.1) on [t 0 ,T ]  if and only if x t  satisfies (3.2). The

integral equation (3.2) and its analogue in the state-space

3Rn x L2 (-r,OlRn) have been used to develop various different

schemes for FDE before [1,2,4] and Theorem 3.1 below is a

generalization of them for a specific class of schemes.

.1i
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Let {tN}, j 0 O,...,N be a partition of [-r,O] given

by t r = r and define the corresponding sequence of linear

finite dimensional subspaces ZN of C by ZN = {€ Cj¢ is a1 1

linear spline with knots at tN.

A basis for ZN is given by the columns of NN  N N

where is a matrix whose columns are in ZN  and for which

-i -N 6 -i (3.3)

holds; here 6ij is the Kronecker symbol and I is the identity

N
matrix. Of course, dim(Zl) = N+I . Next we introduce some

additional notation. The families of operators } and {A

fro C into defne anyfrom C into Z1 and {QI} from [-r,01 into Yn,n are defined by

(PN4)(t ) = 4(t ), for j 0,...,N1 3 3

! 0 for s N -r,-tll
(l+Ns)I for s E (-t No

and
A N € = N ,

with N Z Z, given by

N i (t0 ('t .) for j=1..,
3 r j-l 3

4N(0) 0.
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Pi and Q1N act as interpolation operators onto, respectively,

into ZN. We call {zNp, AN } the linear interpolating spline
scheme [41. To motivate the definition of AN we recall that

S(t):C 4 C is a linear Co-semigroup, whose infinitesimal generator,

A, is given by Dom(A) = { C)4 E cl(-r,0.Rn), (0) = 01 and

=A Since AN N 1,2,..., are bounded linear operators,
ANt 1 N

they also generate linear semigroups e that we denote by S1 (t).
N N N I~

The matrix representation [All of A, restricted to Z1 is

given by

0 0

[A l, (3.4)

0 1 -I

where ® denotes the Kronecker product.

Remark 3.1. The proofs to the theorems in this section rely quite
[AN It

aieavily on the simple structure of [Al] and e ]. For higher

order splines, for example, the matrices analogous to AN

wider and wider band matrices, whose matrix-exponentials seem

quite formidable.

.i
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In the following lemma we state some of the properties of

AN ~N an N

Lemma 3.1".

(a) lim p =P for all E C,
N 1

(b) jjP~jj < 1 for all N,

(c) lim SN(t) = S(t) , uniformly in t on compact
N_ _ _

subsets of [0,o),

(d) IISN(t)I, < 1 for all N,

(e) lim (S l(t)Q N )(s) = (S(t)Q 0 )(s), uniformly on
N
compact subsets of [O,a] x f-r,O] - {(t,s)It = -s}, for any a > 0,

(f) jjQN(s)jj < 1 for all s E [-r,0] and all N.

The proof of Lemma 3.1. is contained in [13, pp.81].

(a),(b) and (f) are straightforward, (c) follows from the Trotter-

Kato theorem, (d) holds since the logarithmic norm of [A1 is
£ [AN] t

zero and (e) is proved by using the special structure of e

Theorem 3.1. Let (HI) - (H3) hold and assume that U is a

bounded subset of LP(t 0 ,T1R
m ) and T > to. Then for all N

sufficiently large

toEct)~~~ -S(t)Pj f S(t-s)tqf(s,z(s),u(s))ds (3.5)

0 1

.] .. .
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has a unique souinz z (*;$,u) E ZN I n [OT n

r z (t; ,u) = xt(.;$,u) in C (3.6)N

uniformly in u E U and t E [to,TI.

Proof. The proof of this theorem is contained in [16] and will

only be outlined-here, First, it was verified in [13, Lemma B.21

that the integral in (3.5) exists as a Bochner integral and that

[ft S(t- s) f (s,y (s) ~u(s))d~ ) d (S1(t-S)Q.) T)f (S,y(S),u(S))ds.

Since N1 and it follows immediately that

the trajectory of any solution of (3.5) must lie in Zl.

By Lemma 2.1, (L2), the family {z(t,u)It E [t 0 ,T ] and uEUI

is contained in a ball of radius Y, 0 < y < , in C. For any

a, to <a < T we define the set

{* CC(to,;C)I sup M1t)1 < y + 1,
te[t0,a]

and a family of operators VN:C(t0 ,a;C) - C(t 0 ,a;C) by

tN

N ) I t S (t-s)Q f(sy(s),u(s))ds. (3.7)(V 0)t -
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By (H2) and Lemma (3.1) (d) one can show that there exists a

constant C1 , independent of N and u E U, such that for

all t E [t 0 ,c ] and y,w E Ma

IVNy(t) - VNw(t)j < C1  sup lY(t) - w(t)I(t-to)1/ 2 . (3.8)
tE [toa]

Moreover, there exists a function p with lim p(N) = 0 and a
-- N

constant C2, both independent of u E U and C2 not depending

on N, such that for all y E Ma and t E [t0,a]

IvNy(t)zt) < p(N)+C 2 (T+Xl/2+(t'to)l/2+(ft Iy(s)-z(s), 2ds) 1/ 2 )
0

< p(N) + C2 (T+X1 / 2 +2(t-t 0) 1/2 (l+y)). (3.9)

To verify (3.9) one uses (3.2), (3.7), (H2) , (H3) and Lemma 3. 1.;

Lemma 3.1. (e) specifically implies that for each T > 0 and

X > 0 there exists an N0 = N0 (T,X) such that I (SN(t-s)Q) (0)-

(S(t-s)Qo)(e)I< T for all N > No, t E [t 0 ,T], 0 E [-r,0] and s E [t 0 ,t ]

(t-x+qt+A+D).

Estimates (3.8) and (3.9) imply that there exist T > 0, X0 > 0 and

al,t0 < a, < T, such that for all N sufficiently large

VN a 1 and VN is a contraction on Mal so that there

exist unique solutions zN of (3.5) on [t0,al]. For t E [t0,a1]

equality (3.6) follows from the first inequality of (3.9) with

vNy(t) - y(t) = jN(t).
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We now notice that the constants in the estimates (3.8) and (3.9) are actually

uniform in t E [t0 ,T]. Therefore, one can proceed stepwise with

constant stepsize a1 - to, each time repeating the above argument

until T is reached. This concludes the proof. []

Remark 3.2. Theorem 3.1. remains true, if (13) is replaced by

assuming Lemma 2.1 (L2) and

If(t,0,u)i < n2 (t)(l+IulP/ 2 ), for all tE [t 0 ,-) and u E]Rm.

For the proof of Theorem 3.1 we only used properties of the

{zN,P1AIN )-scheme as given in Lemma 3.1., so that this theorem

would remain valid for any scheme that satisfies Lemma 3.1.

We now recall the NFDE (2.1)

dd Dxt = f(t,xt,u(t)) for t > to

x0
xt =

0

and assume

(HS) (i) D = 0(0) - B (-r,) with 0 < rI < r

(ii) p(B) <;

here p denotes the spectral radius of the matrix B E -n,n.
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Remark 3.3. Condition (HS) is not as strong as it might appear

at first, and is directly connected with stable difference

operators as discussed in 18, chapter 12.5]. If D is of the

specific form chosen in (H5) (i), then it is stable (stable in

the delay rI) if and only if p(B) < 1. Note, that if p(B) < i,

then there always exists a norm 1I on ]Rn and a subordinate

matrix-norm 11'11 , such that IIBIJ < 1. Throughout the rest

of-thlis chapter it is assumed that IRn is endowed with this norm.

It should also be mentioned that those NFDE which arise when trans-

forming certain hyperbolic partial differential equations generally

satisfy p(B) < 1 , [6].

Remark 3.4. Although the results are stated for the case

when D contains only one discrete delay, they are easily

generalized to several delays as in (2.2), as long as there exists

some norm on In such that . lBill < 1 holds for the sub-
i=l

ordinate matrix norms. We recall that in the scalar case
L

SIBilt < 1 is necessary and sufficient for D to be stable,i=l
[8, pp.2 91].

For D as in (HS) the mollified equation (2.4) is just the

variation of constants formula of

x(t) = 1 B[x(t+c-rl) - x(t-rl)] + f(t,xt,u(t))

(3.10)

Xt = E C.

-I
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By Lemma 2.2 (a) there exists an el such that (3.10) has a

ne = xf(o;u) for all with 0 < < qt < r 1

Next for c E (0,l] consider the sequence of equations

ZNIC~= SN (t-to) PNO + ft N (t-s) Q~f(s,zN,,C(s) u(s))ds +

+ ftsN(t~s)QI i g(zN,,(s) (.+) _zN(s)(.))ds

to C

(3.11)

where g(O) = BO(-rl), (or g(O) = Bio(-ri) in case of multiple
i=l

discrete delays in D). By Theorem 3.1 there exist solutions

zNC (.;4,u) of (3.11) for sufficiently large N and

lim ZN'c(t; ,u) = x(.;4,u). (3.12)N

The above limit holds uniformly in t E [t0,T]  and u E U, for each

fixed c E (Opel].

The sequence of approximating problems whose solutions

(hopefully) approximate the solution of (2.1) finally is given by

Nt- + f S(t s)(szN (s),u(s))ds +

1 0 t 01 N N(

Slts) B(zN(s)(tN zN(s (tN))ds (3.13)

ft 1 1

. 0
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Thi i te ppopiae frmofusngth {N N scem
Thisis he pproriae frm f usng he Z1 P1 A1 shem

for approximating (2.1).

Theorem 3.2. Let T > t 0 and let U be a bounded set in

LP(t 0,TlRe). Moreover, assume that (Ii) - 013) and (115) hold

and that JjBIl < I for an appropriate norm on IRn. Then for

4E W lW(-r,Oan) solutions ZN(t;4 ,u) of(3.13) exist and

lim ZN (t; ,U) = x (.; ,u) (3.15)
N

uniformly in u E U and t E [t0,T].

Proof. First we need some additional notation. For x Elkn(N+l),

with x =col(xo,...,xN) let lixil ' = sup lxii and

lIXIl" = sup lxii. Since the trajectories of (3.11) lie
i=l . .. N

entirely in N it follows that zuniquely

defines vNCt;o,u) EIRn(N+l), for t E [tt0,T].

The existence of solutions z N(t;o,u) of (Z.14) is quite

simple to verify and we immediately turn to (3.15) and choose

ni > 0 arbitrarily. By Lemma 2.2(b) it follows that there exists

an e2<C 1 such that

IX6(.;bU) -xt(;,) n (3.16)

t/ t



This is the appropriate form of using the {Z 1 P IA I scheme

for approximating (2.1).

Theorem 3.2. Let T > t0. and let U be a bounded set in

LP~t,'s). Moreover, assume that (FH1) -(Ff3) and (HAS) hold

and that ~JB~J < I for an appropriate norm on IRn. Then for

E W1'"(-r,O 1Rn) solutions zN (t;4,u) of(3.13) exist and

lim zN (t; ,U) =xt(.; ,U) (3.15)
N

uniformly in u E U and t E [t0,T]1.

Proof. First we need some additional notation. For x EIR n(N+l)

with x = col(x,...,) let 11II sup txjj and

liXIt sup 1x1i. Since the trajectories of (3.11) lie

in N ~flosta N,s N NE~
entirely in Z1i olw htz (t; ,U) = a v'(t uniquely

defines VNIZ(t;4 ,U) E]Rn(N+l), for t E [tomT.

The existence of solutions zN (t;cF,u), of (Z.14) is quite

simple to verify and we immediately turn to (3.15) and choose

n> 0 arbitrarily. By Lemma 2.2(b) it follows that there exists

an C2 < C such that
2 1

t(;u)- xt(.;O,u)I < (316
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for all e < e,, u E U and t E [t0 T. We shall use the simple

estimate

IIwN(t) -  11 o< sup( ItWN(t)-vN'S(t) 11 wt)-_wN(t) 1+ IwN(t).vNs(t) I( +

From the two technical Lemmas 3.2 and 3.3 at the end of this

section and the above estimate, it follows that there exist constants

N0 and 3' 0 < E3 < E2' such that

IzN'e(t;iu) _ zN(t;u)I <n (3.17)

for all e < e3, N > N0 , u E U and t E [t0 ,T] . Finally,

(3.12), (3.16) and (3.17) imply that for some N1 > No

IzN(t; ,u)-xt('; ,u)I < 3n for all N > NI, uniformly in t

and u. This ends the proof.

Remark 3.5. The special form of [A,] was used in the proof of

Lemma 3.1 (e) and will be used even more stringently in the

proofs of Lemmas 3.2 and 3.3 below. For subspaces ZN arising
av

from averaging approximations [2] the operators approximating
turn out to have the same matrix representation as A1 ,

restricted to the finite dimensional subspaces. We briefly discuss

I ... ...

'Im
... .. |, ... • , .... . ( -
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the averaging approximation scheme. The state space is chosen

to be IRn x L2 (-r,O n), and will be abbreviated by Z when

endowed with its natural inner product and resulting norm.

ZN are linear subspaces of Z defined by ZN { (n,) n ER n ,av av
NN

= ajxj, a. E]Rn}, where X is the characteristic function
oft Ne N The orthogonal projections

pN N N N NNav Zav are given by Pa(n,@)= (n, 0 Px ) withav N av avj=l j,

j rj1 (s)ds for j = 1,...,N. The operators corresponding

0J

to QN are defined by Qa0(n,O) = (n,O), independently-of N andI v N N
~N N N N N N

AN :Z - Z are given by Aav(n, a.x) = (0- 1 (a a)X.)a avj'j . aj-l

j=l j=1
with def N N N N N Na 0 and avfor z E Z. Zav,PavAav}

is called the averaging approximation scheme.

For linear equations with f of the form

- 0
f = A0 n + AiO (-h i ) + +s)(s)ds Eu(t), (3.18)

i=1
1-r

where 0 = h0 < hI < ... < h,= r, Ai E.Yn,n, E Ezn,m, A(*)

an L n x n- matrix-valued function and u E LP(t 0 ,T;3R m),

it was proved in [2] that

lim Zv(t;n, ,u) = z(t;n,O,u) = (x(t),it) in Z (3.19)
N t a

uniformly in t E [t0,T ] and in u, as u varies over a bounded
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subset of LP(t 0,TJ ;R). Here x satisfies d = f(x(t),xt'ut )),

(i(to),ito) = (n,$) with f as in (3.18), and ~Nv(t) =
0a

N N N -N~t E (N+l) are the solutions(Wjo(t). w.(t)x.) where w(t R

of the ordinary differential equation

w (t) [A](t) col(f(zN (t),u(t)),0,. 0)

-N N N N N N
.w(to) col(n,0 'IN, _ N) where Pav(nI) (n, [ Nx

Once (3.19) is established one can turn to

x(t) = Bi(t-rl) + f(x(t),xt,u(t))

(3.20)

(x(to),xt) = (0(0),O), E C.

Only a few changes have to be made in the proof of Theorem 3.2.

(we notice that the technical Lemmas 3.1 and 3.2 remain true,

since O(N( (°) o ))i - (PN (,(0), ))i+lI = 0(1) foravav ( O ' ) i j (

i M 0,...,N-l, and E E W1'1') before we arrive at:

Proposition 3.1. If f is as in (3.18), if T > to, E W

and if U is a bounded subset of LP(t0,T;]Rm), then
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liav(t) (x(t),xt) in Z (3.21)N a

uniformly in u E U and t E [t0,TI. Here x is a solution of

(3.20) and zN t) = N N wN (t)x) where Nav (Wav,O(t) av,itw Way 1s

the solution of

t N + c(t),u(t)) + N N N
wa~) Alav av r avr N lt-av,.iN

(3.22)

N N N ~ N N~O~ N Nw (to) = col(,(O), 1,.. ,'N where P avO),, ((0), N

Comparing (3.14) with (3.22) we find that for many specific NFDE

the approximating ordinary differential equations arising from the

linear interpolating spline scheme and the averaging approximation

scheme differ only with respect to the initial value. The initial

values will be equal if € is constant, for example. Proposition

3.1. can be extended along the lines of Theorems 3.1 and 3.2 to

include nonlinear equations, if conditions analagous to (Hl)-(H3)

hold. Since the techniques are rather obvious but tedious, we

shall not include the details. This ends Remark 3.5.

We conclude this section with the two lemmas which are necessary

for the proof of Theorem 3.2 and recall that vN'C(t) and wN(t)

are the coordinate vectors of zN'c(t; ,u) and zN(t;$,u) with

respect to the basis aN respectively.

iri
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Lemma 3.2. Under the hypotheses of Theorem 3.1 there exist

constants Ki, i = 1,...,8 depending on *,f,B,T and U, but

not depending on N,E, t and * such that

jjwN(t)11I < K1 and IIwN(t)1I < K2 1$I- + K3 + K4Iu(t)IP/2 . (3.23)

r 1- JJBJJl he
If, in addition, c > 0 and N satisfy rf <  2then2

IfvN,'(t) 1< K and j[vN,E[[ < K6[ + K7 + K8 Iu(t)IP/ 2  (3.24)

with 11 = ess sup I0(t)l.
tE[-r,0]

Proof. We start with a few useful technicalities and define

Z(Si) N ((t-s) exp(-t!(t-s)) for i = 0,...,N-1 and t > s.

The following estimates can be found:

J Z(s,i)ds < 1 for i = 0,...,N-1 (3.25)

!0

* 1. .. ., ..
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and1 Jt z 2 (si)ds < N e TT ,for i 0,. .. ,N -I. (3.26)
to 2rVi

t
(3.25)follows by a simple induction argument showing j Z(s,i)ds

1 N(t-t0 ) k-N0
- k TO r -exp (-(t-t0 )). Another induction argument

implies that J Z2(s,i)ds N (2i)! ,and (3.26) now
it 6-- - r (i!)2 2 i+l

follows by Stirling's formula. From [12,151 we use the explicit

representation of e[Alt1 given by

I 0
[ANt

e(At 1 (3.27)

[e xp(LN CN)_I](CN-l a N exp( - CN)

N
where a = ol(I,O,...,O) and

-1 00

C N

0 0 1I-1

By employing the measure of the logarithmic norm of [A1] it is

proved in [12, lemma 5.4] that for each x =(xo,...,xN) E Mn(N+l)

and with IRn endowed with the Euclidean norm



30.

N

II [e Ix II < Ilixir (3.28)

holds; it is simple to check that endowing ]Rn with any norm does

not change that estimate.

To verify (3.24) we recall the definition of t N and choose
L. 'NtNN ,N ); of course,0N  k N(c) such that c r1 E [tN tNN_ k_ of couse

j-_k j-kN
. it is still assumed that c < c1 < r1 . The choice of kN imples

(k N_1) r £ (k N+l) r and IN r- < rN (3.29)
k Nk

From (3.11), (3.28) and (3.29) it follows that

lN, c(t)II < I J If(s,zN c(s),u(s))Ids +

+ I t 1 B col(I,(1-(1,t-s))I,...,(1-a(N,t-s))I)(v ,: (s)-vN I(s))dsl

it If 9- N~vN Nto 0 j"-k' j'

j-1 1. Ns

where o(j,s) = exp(-L) I 1 N)(-) for X = 1,...,N. By (H3)

the last estimate implies

' < IPj I + J n2(s)( IL,~e(s)II +l)(l+lu(s)lP/2 )ds + IIR(t)U ,

where we yet have to find bounds on the coordinates of R(t).

.1 .__________
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t N

iI N vN'p (s)dslIR0(t)0 =p =jN_k +1

< kN(II v1,c(t)tl0 + 1I vNt(to)t) 0)

< BI) (l+c) ( ] vN' (t)I + 11 vN' (to)l );

here we used (3.29).-

Similarly for 1 =,...,N one finds

IRt(t) Br . I, ft1[N 4(-)p(t-s) I N V "(s)dsI
Eff 0)r A-0-l Ttr r= l=kN jN+ I

=ji N t + A. Z Ns,i-1)vN,c s)ds <

k  v (i, t -t)ds)]<U(o)1

<IBI I [llvN, Cto)ll + Z(s,i-1) .vNc(s)lds
L 0t

• IIBII (1+ ) (llvNrC(to)ll + I Z(s,i-l) II Ncs11ds).

By hypothesis on c and N, we have that 1 - IIBIJ _r >- 11_ Il ), and

IIBII (1+W) _ 1, and therefore after summarizing the above estimates

one arrives at

<2(1- IIBII )-Il[IpN + t n2 s)Cl+u(s)IP/ 2 )ds + tI(,CCtol +

to

t (s)

... , . .. [ _ - . ..r ,- : ':L" ., 
j l,, _

- . .0
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+ Jax (Z(s,i-l) + n..s p/us~~2)iI v1, cS (s) cds]

i=l,...,N it 0  2s(+u

< 2(1- IIBiI )- 12,W + J t n 2(s)(1f lu(s)Ip/2)ds +

0

+ max Jt (Z(s,i-l)+n ()l Iu~)p/2)) IIVN~c(s)II -d]
+i=1....N it0  2(-'Ius ]

-- an- application-of Gronwalri's inequality now implies the result. For the

estimate of IlVN,(~ one uses (3.11), (3.27) and (3.28),

so that for t E [tOTI

II a(t)I ~.I~co1(O, (vN, c(t)- vN, c(t )) I ... ,(Vc (t0  C (~£to)I

+ 1t col ( t-r Nss) N -N(t-s)

f(s,zNO£,(s),u(s)) + B(v~c N(s) _ vN, cs))]dsII +

+ Pft,zN(t),u(t)) I + JIBvN N (t) - v:N (t)) ~

Recal tha ON ( N ) Since by assumption * E W1 j=0 j~j 8 N£t)
the last estimate together with (M1), (3.25)and the previously determined

bound on zNO£(t) (or equivalently vN~c(t)) imply

IIVN,£(tiII jess supisi + Jt n2 (s)(1+Iu(s) lp/ 2)(+K 5 )ds +n 2(t) (1+Iu(t)lp'2)(K+1)+
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-N(t-s) x -N(t-s)
+ flit col 0,e r i,) e r __ sN-,E'(s))dsll +

t0

N~~cVN c(t)),

+ I! B v (3.30)

It is in this estimate that *E 1'* is needed essentially.

By (3.10) the coefficient vectors v (t) satisfy

VN CN1 'C ' ictJ (331

vN'(t) = [NIv ICt) + [Qljf(tzN'c(t),u(t)) + 1-B(vN iC( 331

~ ~~ ~ N-O N,( ) _v.€t)fri=1 N.

which implies that ' (t) = (vi 1 (t) 1(t)) for i "1

Therefore

iIBk rj Ct pl(
IB(vN'lckN(t)-' ,'Rt))l " f. • 1- (Bc i /, t i .<_ IB (+-'l) 11 'C(t)li1 .

The fourb tern IV in (3.30) is estimated separately now. A short calculation

shows

I(V)i1 < IIJ r K5  < 3Ks

And for i - 2,...,N we get

i i~ r i J _ e r VN',(s)dsl =
SjNkN+l to

0
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_UB N [IIvN ct0 )1 + J (Z(s,i-2) + Z(s,i-1)) I~ N'C (S)l ads]

3 B =jN kN+l t0

SlllrkNKs

< 3 N 1< 6K5 "

Using these last estimates in (3. 30) we arrive at

- -II g (t)11c <--2-(l- IBIl )- 6 K5  + 1 1 + 2n (s)('+lu(s) P 2 )(K5 + )ds +

+ (K5+1) n2 (t)(l+Iu(t)IP/2 )],

so that (3.24) is established. The proof of (3.23), similar to the one

for (3.24), is contained in [15] and will therefore not be given here.

Lemma 3.3. Under the hypotheses of Theorem 3.2 and the additional

condition that < 1IBI there exist constants M i depend-

ing on ,f,B,T and U but independent of *,N,e,t such that

IVN,Ct) - v'e(t), < 1J1 M1  + H i (3.32)

N N 1 + 1 (3.33)
N 1 Nt1

I~vN-.(t) -oN+(t)II 1)1 (CM + + M - (3.34)

I
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Proof. From (3.11), (3.24), (3.27) and (H3) it follows that

-N -N- 

)t r e 1+ ,e

i!e~r (f(s,zN'(s),u(s)) + -v -Ne~))-N(t-s)it n zcs'(s) (I+ 1' (s ll" + 1)ds

i 1+(0) - N¢(N l J te r (lusl/)

(r I$1J + (K5+1)n2 (t) ( + Z i1 2 £jto lu(s)IIcS

ft 0Nrr jp12 I lu(s) I, P ds +

1 +!IIBII NII-K6+K7) + K0((/( /s)

0

r II IIr6

By (3.29) and since c- < 1 i follows that N~I~~ < 2, which
can be used in the last estimate to imply (3.32). The proof of
(3.33) is quite similar. Employing (3.26) the second estimate

in (3.29) and (3.31) the verification of (3.34) is somewhat tedious,

but simple,and will not be given here, see [16]. Estimates (3.32)-(3.34) imply (3.34) with I re

+ re cdb [(I K+ K)I'l s) were

not able to prove (3.34) directly.

(.

in(.9 n 33)tevrfctino 33)i oehttdos
J ~~u ...... an w il ....... be,-.. ....... here. see.. ... . . [1 ] st m ts,3 3 )
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4. Application to Optimal Control Problems and Examples

In this section the theory that has been developed in the

previous section will be applied to optimal control problems

associated with (NFDE).

We restrict ourselves to a simple class of problems and re-

fer to [1], [16] for a more elaborate discussion on the type of

problems, specifically Cost functionals, that can be treated within

the same framework. The aim of this section is to demonstrate

the feasibility of using the linear interpolating spline and the

averaging approximation scheme for actual computations and to report

on some examples.

The equation under consideration is (2.1) and (2.2) again

and in view of Remark 3.3 we assume that IRn is endowed with a

z
norm such that J IlBil < 1. The controls will be taken from

i=l

a closed and convex subset U of LP(t0 TlRm). Below we shall
N N , } Nc e e a d w

continue to give the details for the { ZP 1,Al scheme and we

only mention that in continuation of Remark 3.4 and Proposition 3.1

one may derive similar results for the averaging approximation scheme.

nMn) p m~
We define a functional J: IRn X C x C(t 0 ,T]) x LP(t 0 ,TR)-R

by

J(yly 2,y3,y4) = (yl (O+ (y(s)-(s))* [fO (s)- (s))ds +

+ fT[Y3 (s)*QY3 (s) + y4 (s)*Ry4 (s)]ds (4.1)
to

where ; E C is fixed and G,H,Q and R are semi-definite,

symmetric matrices of appropriate dimensions. R moreover is
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positive definite. The cost functional 4:Lp(t0,T*,R m  IR

is given by

*(u) = J(x(T; ,u), x T($u) , x(;pU), U)

where x(-;F,u) is a solution of (2.1). Now an optimal control

problem can be formulated.

(P) Minimize (u) over U.

Analogously we define a sequence of approximating optimal control

problems:

N N(P) Minimize * Cu) over U, where

N (U) N(z N(T;4,u)(O), z N(T;$,u), z N(;,)O,)

N
with z (.;$,u) solution of (3.12) and with

j N: 1R'n C X C(t 9 T1R n ) 9 LP (toT1Rm) R

given by

~ =(yl- (O))*G(yl- (O)) + 0~~2S -p QP s)) Hy() -P)(s))ds

+1 [ Y3(s)*QY3(s) + Y4(S)RY4(s)]ds. (4.2)
to
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Note that (P N) is a finite dimensional problem in the sense that

it is equivalent to an ordinary differential equation optimal

control problem for the coefficients w N(t) of z N(t). We shall

not discuss the existence problem of solutions of (pN) but rather

refer to [e.g. [17], Chapters 4 and 5] and assume that (pN) has

*a solution uN; if f is of the form

V
f(t,0,u) E AiP(-ri) + Eu (4.3)

i=O

with Ai  Ynn, E E Yn.m and 0 = r0 < ... < r = r, then -N

exists [16] and since u N 0N(u) is strictly convex it is the

unique solution of (pM)

Theorem 4.1. If (Hl)-(1H4) hold, if the norm on Rn is chosen such

that X IB.i < I for the subordinate matrix norms and ifi= 1

{uik} is a sequence of optimal controls of (PN) in the convex and

closed subset U of L2 (t0 ,TIRm), then there exists a subsequence
Nu k} of jN which converges weakly to an optimal control

u E U of (P).

Proof. For the ease of the reader we shall include the proof; the

arguments are quite standard, however. First, note that {N} is

bounded in L2 (t0 ,T;IRm). For if not, then there exists a sub--N £N £ N £ N £
sequence u of UN with u NZ I C and therefore 0 (u )

Nv) v) < f or any v E L2 (t0,T'R), which cannot hold
for the specific J that was chosen. {-N being bounded implies

that it is weakly compact. Therefore, there exists a subsequence

.
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Nk N 2 m

{u } of {- I, which converges weakly to some -U in L (t0,T;R).

U is assumed to be convex and closed, which implies that it is also

weakly closed and therefore -u E U. By the triangle inequality we

find for t E [t0,T]

Nk Nk N{xt(.;C~u) - zk (t, ,u k), < Ixt(';O,u) _ xt(. ;0, Uk),

k k N k),(4.4)

By Lemma 2.3, the first term on the right hand side of (4.4) converges

to 0 as K ®. Convergence to zero for the second term is a

consequence of Theorem 3.2. In the following estimate we use
NNk

u u, the special form of J and (4.4) to find

Onufi = J(x(T;O,u), xT(" ;O,u-), x(. ;Ob,U) ,) =

Nk k N N ~ Nk N
-lim J(z k(T; ,u k)(0), z k(T;O,u '), Zk (-;0, i k)(0), U k)

NkI~I NkNN N N NN
-lim J (z (T;O,u k)0,z k(T;O, ij ), u k( Oi )( )

NkNk Nk
-lim~ (u ) m 0 k (u) (u),

for any u E U. Therefore, -U is indeed a solution of (P); moreover, if we

put u = u in the above inequalities then it follows that
Nk N

lim uk =
k-)

It was pointed out in [16, Remark 4.23 that for f of theN_

form (4.4) the stronger result lim u * u in L2 (t0,TR m  holds.t NN ''I ~hls

. . . .*. ..1.. .. . . . . . . ..... ¥
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We have applied Theorem 4.1 to a number of examples of the type

minimize

j(u) = .f[x(T)*Gx(T)+ f x(t)*Qx(t) + u(t)*Ru(t)]dt

over L2(t0,TlRm)

(P*) where G,Q,R are matrices of appropriate dimensions with

G > O, Q > 0, R > 0,

- - -- subject to . . .

k(t) B*(t-r) = k(txt) + Eu(t),

n
here f:R XC JR is assumed to be continuously Frechetdifferentiable

in the second variable for each fixed t, t - f(t,Tt) is Borel

measurable for each p E C(to-r,TR n) and further, given any compact

convex set X cI n there exists m E L1 (to,T 1R1 ) such that

If(t,ptdf(t,X) I <m(t) and Idf(t, t)(.)I <m(t) for each p EC(to-r,T'In);
A

2here df(t,x)* denotes the Frechet derivative of f w.r.t. the second

A variable evaluated at p.

In some cases we can calculate analytical solutions to (P*)

using the maximum principle for NFDE. Since the latter is not readily

available in the literature, we include its statement in a form

modified to suit (P*) in Proposition 4.1. This is a special case

of a very general maximum principle for NFDE that was developed in

[14, specifically Lemma 3.3 and Theorem 4.2]; see also [5].

Proposition 4.1. Let u* be the optimal control for (P*). Then

there exists a scalar O 0 < 0 and a function E c L2(t0 ,T+r; n)

such that I'
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() w(t) -0 on (T,T+ r]

(ii) (T) oGx(T) and

*(t) = Ocox(T)*G + *(r+s)*B J ft- f X

where df(t,xt(-u)) J dri(t,s)y(s) for y E C, and
-r s

(iii) [((t))*Ei(t) + 0u(t) Ru(t)]dt =

= max [ (t)*Ev(t) + 1 O10v(t),Rv(t)]dt... vELP (t 0 T ;R ) ft o0T

If f is moreover linear in the second variable then (i)-(iii)

in Proposition 4.1 guarantee the existence of a solution u of

(P*), [14, Theorem 5.1, Remark 5.1] and (iii) can be replaced by

the pointwise maximum principle.. For

f(t,(P) = A0(P(O) + A1 P(-r)

for example, we get the following necessary and sufficient conditions

characterizing -u, (Without loss of generality, we let a -1):

(i)' P(t) 0 on (T,T+r]

(ii)' *(t) f -x(T)*G + *(r+s)*B + (s)*A ds +

+ T  ITt (S)*AdS - tx (s)*Qds

+It+r Ats

(iii)' *(t)*EU(t)- M 1tRiit) m (t)*EvT ~)*m(t* ax -C)Ev vR

for almost every t E [to,T].
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From (iii)' it follows that u(t) = R- E *(t) and we see

that even in this very simple case *, the solution of (ii)' and

therefore u will not be continuous, in general, but will have

jumps at all multiples values of r.

We shall now briefly report on some of the numerical examples

that were carried out.

Example 1. This is the optimization problem of minimizing

J(u) - yx2 s) + ufu2(s)ds

over L2 (0,2;M), subject to

=1:(t) 2F k(t-l) + x(t-l) + u(t) for t E [0,2]

x(t) = U for t E [-1,0].

We used the maximum principle in the form (i)'-(iii)' to calculate

the exact solution. The optimal trajectory xex and optimal control

u ex were found to be

ta  2  9
ft 6T--t) + 1 for tE [0,1]

xex(t) (t-1) 2 96 6 132 6 3 3 177

~(1-&-) a t(-T + (t-1) + a M6 for t E [1,2]

and

6(t 17) for t 6 (0,1]
UexCt)
uexM

-6 for t E (1,2]

, .. , •(.
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7

where 6 (2+4 )y
I+Y

For this and all the other examples reported on in this section,

we used the averaging scheme to approximate the infinite dimensional

problem. The resulting finite dimensional optimum control problem

was solved via a combined gradient-conjugate gradient iterative

technique and numerical integration was carried out by a modified

Runge-Kutta method (Gill's modification).

For this example, we did calculations for various values of Oc

and Y. In Tables 1-3 the results for U E 1 and Y = 1 are

presented. As should be expected one can recognize convergence of

optimal state, payoff and control to the exact solutions. However,

it seems quite difficult from this and the other examples that we

studied on the computer to predict a possible rate-of-convergence

result. Certainly, the convergence will be slower than linear, in

general. On the other hand, in many examples we experienced

surprisingly good approximation results for low values of N. As

should be expected, due to the jumps in the optimal control at

N
multiples of 1, the relative error of uex - u has a peak at

t - 1. One can convince oneself quickly that the fact that it

actually increases in this example is no reason for precariousness.

.. . . .. i I I * ,. . .. *.. . .. . . . .(,



TABLE I 44.

x x 4  8X x X8 • 16 32 x x _ 128
ex ex- exx xex-X xex- ex

0.0 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.25 0.8629 0.0118 0.0096 0.0078 0.0058 0.0040 0.0007

0.5 0.7713 0.0136 0.0077 0.0055 0.0039 0.0026 0.0017

0.75 0.7252 0.0214 0.0078 0.0023 0.0009 0.0008 0.0007

1.0 0.7247 0.0484 0.0261 0.0136 0.0070 0.0035 0.0018

1.25 0.7401 0.0734 0.0445 0.0262 0.0149 0.0082 0.0045

1.5 0.7384 0.0701 0.0384 0.0205 0.0112 0.0063 0.0000

1.75 0.7308 0.0567 0.0278 0.0136 0.0071 0.0040 0.0024

2.0 0.7287 0.0506 0.0257 0.0133 0.0070 0.0038 0.0021

TABLE II

t Uex(t) Uex-U4  Uex-U8  Uex-U1 6  Uex-U32  Uex-U64  Uex-U128

0.0 -1.6397 0.0863 0.0748 0.0641 0.0539 0.0454 0.0390

0.25 -1.4575 0.0125 0.0078 0.0048 0.0008 -0.0023 -0.0032

0.5 -1.2753 -0.0237 -0.0250 -0.0195 -0.0119 -0.0067 -0.0038

0.75 -1.0931 -0.0268 -0.0318 -0.0291 -0.0199 -0.0098 -0.0039

1.0 -0.9109 0.0015 -0.0130 -0.0291 -0.0440 -0.0563 -0.0658

1.25 -0.7287 0.0644 0.0469 0.0256 0.0082 -0.0006 -0.0019

1.5 -0.7287 -0.0136 -0.0138 -0.0115 -0.0070 -0.0038 -0.0021

1.75 -0.7287 -0.0466 -0.0255 -0.0133 -0.0070 -0.0038 -0.0021

2.0 -0.7287 -0.0506 -0.0257 -0.0133 -0.0070 -0.0038 -0.0021

TABLE III

exact Jex-J4 Jex- 8 ex- 16 Jex- 32 Jex- 64 Jex-j128

J 1.3664 0.0186 0.0081 0.00391 0.0021 0.0012 0.0008....



45.

Example 2. This is another linear optimization problem, in which

we try to minimize

1 2 + 1 u2

Y + 7 (s)ds

over u E L2 (0,21R), subject to

*(t) =- :k(t-1) + 2x(t) + 4u(t) for 0 < t < 22- -

x(t) U for -1 < t < 0.

Again we used the maximum principle to calculate the exact solutions:

e2t16- 1 e2(l+t) e-4t(e 2[ 1 - )  5 -e 2J +16P 6e- [e T + + - T] for t E [0,11

xex(t) a e2t+4P6e2t 2 (e2 " e6 + -e4 - 1 + 4r1 6(e2 " 4-)e 2t(t-1) - ae2t 2(t-1) +

+ 6pl[e 4 2 t(]2- t - e2) + e2t(e2 - ] for t E [1,21

and

ex4p 1 6ez( 1 -t) - e 2  t) for t E (0,1]

-4p 16e 4"2t for t E (1,2],

4 2 -l1 -1 8 6 13 4 2 9 b -l-
where 6 a(e -e )(Y -P (-4e + lOe - e 2e +2

ON i" " 1-"
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The exact and the numerical values for the values A 4, P 3

and Y = 1 can be found in Tables 4-6 below.

The numerical solution of the optimal control problem requires

an initial guess for the optimal control. In order to be able to

compare between various examples we always take as an initial guess

u0 = 0. In actual computati6ns it will be advisable to use the

solution uN  of the Nth approximative step as start-up value in

the-next step. The approximation in Example 2, for instance, -is not

as good as in Example 1 where the exact optimal control is closer

to 0 from t = 0 on. This can be seen when comparing the

relative errors I0ex-ON I/lexl.

TABLE TV

ext(t) Xex-x4  xex-X8  XexX16  xX 32  xX 64  e-128

0.0 4.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.25 2.3730 0.0247 0.0166 0.0101 0.0063 0.0040 0.0024

0.5 1.2449 0.0149 0.0313 0.0219 0.0105 0.0043 0.0014

0.75 0.3698 -0.1569 -0.0642 -0.0139 0.0049 0.0058 0.0019

1.0 -0.4503 -0.5966 -0.4510 -0.3358 -0.2492 -0.1836 -0.1342

1.25 -0.3738 -0.3618 -0.2246 -0.1176 -0.0544 -0.0267 -0.0174

1.5 -0.3019 -0.2629 -0.1737 -0.1095 -0.0725 -0.0503 -0.0355

1.75 -0.1851 -0.1877 -0.0514 -0.1287 -0.1097 -0.0974 -0.0642

2.0 0.0686 -0.0116 -0.0058 -0.0029 -0.0014 -0.0007 -0.0003

C'L
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TABLE V

t Xex(t) ex Uex-U Uex-U16  Uex-U32 UexU64 uexU128

0.0 -3.9803 0.0119 0.0120 0.0122 0.0123 0.0122 0.0120

0.25 *-2.5167 0.0320 0.0145 0.0049 -0.0001 -0.0024 -0.0030

0.5 -1.5886 0.0398 0.0183 0.0067 0.0013 -0.0004 -0.0009

0.75 -1.0012 0.0412 0.0222 0.0123 0.0063 0.0024 0.0004

1.0 -0.6302 0.0393 0.0250 0.0189 0.0168 0.0167 0.0175

1.25 -0.4099 0.0216 0.0106 0.0059 0.0043 0.0031 0.0018

1.5 -0.2486 0.0289 0.0175 0.0099 0.0051 0.0024 0.0011

1.75 -0.1508 0.0242 0.0127 0.0063 0.0031 0.0015 0.0007

2.0 -0.0915 0.0154 0.0007 0.0038 0.0018 0.0008 0.0004

TABLE VI

exact Je-J4  Je -J8 Jex1 -J32  J -j64  j -J 128

Jexe ex-ex ex ex

6.4798 -0.1895 -0.0935 -0.0431 -0.0177 -0.0054 0.0002

Example 3. This finally is the nonlinear example of minimizing

J(u) X2(2) + fu2(s)ds

over u E L (0,2]R) subject to

*(t) = sin x(t) + x(t-1) - k(t-1) + u(t) for t E [0,2]

x(t) 4 for t C [-1,0].(l
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The numerical results of this example which are given in

Tables 7-9 seem to support what could be seen in the linear ex-

amples already: the approximation is quite well for low values

of N, and increasing N does not improve the accuracy very

quickly.

TABLE VII

t x4-x8  x8 x16  x16 x32  x32 X64  x64 128 128

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 4.0000

0.25 0.0213 0.0242 0.0167 0.0089 0.0038 3.8395

0.50 0.0266 0.0334 0.0271 0.0151 0.0066 3.7760

0.75 0.0037 0.0128 0.0160 0.0149 0.0109 3.8424

1.00 -0.0378 -0.0318 -0.0252 -0.0197 -0.0153 4.0646

1.25 -0.0609 -0.0476 -0.0312 -0.0166 -0.0078 4.1047

1.50 -0.0435 -0.0244 -0.0143 -0.0090 -0.0053 3.9466

1.75 -0.0158 -0.0048 0.0008 -0.0009 -0.0020 3.6203

2.00 -0.0057 0.0036 0.0068 0.0063 0.0046 3.1176

.__ _ . . -... ,- .....
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TABLE VIII

t u4u 8  u8-u16 u16u32 u32-u64  u64u 128  u128

0.0 0.0977 0.0917 0.0650 0.0498 0.0426 -4.0700

0.25 0.0772 0.0982 0.0725 0.0285 0.0049 -3.8079

0.50 -0.0121 0.0103 0.0353 0.0412 0.0255 -3.4425

0.75 -0.1329 -0.1392 -0.1130 -0.0610 -0.0057 -2.7341

- - 1.00- -0.1706 -0.1598 -0.1369 -0.1119 -0.0881 -2.4752

1.25 -0.0568 0.0135 0.0615 0.0565 0.0194 -3.4442

1.50 0.0598 0.0407 0.0044 -0.0049 -0.0037 -4.0264

1.75 0.0315 -0.0041 -0.0117 -0.0106 -0.0075 -4.9039

2.00 0.0118 -0.0067 -0.0137 -0.0126 -0.0093 -6.2344

TABLE IX

j4_j8 8_16 16_ 32 j32_j64 j64_128 j128

J 0.0348 0.0541 0.0545 0.0428 0.0302 24.4971

Remark 4.1. A series of examples of linear and nonlinear unstable

(see Remark 3.3) NFDE was also tested on the computer. The

numerical results strongly indicate that the linear schemes pre-

sented in this paper do converge without assuming (MS). Unlike in

I..'
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Examples 1-3, however, for low values of N the numerical

solutions are worthless, their relative error being greater than

1 sometimes. Increasing N to 256 and higher, however, resulted

in a surprising increase of the observed accuracy of the approxi-

mation. Although from a practical point of view the case of

unstable neutral delay equations is not as important as the stable

one, it should be a challenging question to study the piecewise

linear schemes presented without assuming (H5). Let us recall

that for linear NFDE and cubic (or higher-) order spline schemes

(H5) could be avoided by working in state spaces endowed with a

special norm depending on the equation, [9,11).
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